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Abstract 

Liquidity in the stock market is crucial for investment decisions, as it enables investors and 

issuers to meet their needs for investment, financing, and hedging. This, in turn, reduces investment 

costs and the overall cost of capital, contributing to a more efficient market. The aim of this paper is to 

explore modern techniques using computer science to address liquidity challenges and develop machine 

learning and deep learning models for liquidity prediction, particularly in the bond market, where 

liquidity is a key issue. Liquidity plays a significant role in investment strategies and investor decisions 

in the securities market. It also affects bond prices and returns on investment through the cost of trading 

and liquidity by transferring bond ownership. The nature of liquidity in the bond market is complex—

volatile, unpredictable, dynamic, and non-linear making it difficult to predict due to the many 

influencing factors, such as trading volume and value. This study focuses on the Thailand bond market 

from 2015 to 2024, characterized by limited market tightness, depth, and modest size. We introduce a 

forward-looking illiquidity measure, Expected Illiquidity (EI), represented by the bid-ask spread. To 

develop robust liquidity prediction models, we use Multilayer Perceptron, Mixed Deep Learning, Long 

Short-Term Memory (LSTM), Multiple Linear Regression, and Extreme Gradient Boosting (XGB) 

algorithms. These models are evaluated by comparing their out-of-sample forecasting errors to a naïve 

estimate using current daily illiquidity. The XGB models demonstrate superior predictive capabilities, 

with the lowest Mean Absolute Percent Error, Mean Absolute Error, and Mean Squared Error when 

compared to other methods in relevant literature. The results of this research have practical significance, 

providing a foundation for the development of decision support tools tailored to the unique dynamics 

of the bond market. By leveraging the predictive insights generated by the XGB models, stakeholders 

can improve decision-making processes, thereby enhancing market efficiency. This study makes a 

significant contribution to portfolio management, investor decisions, and policymaker. Regulators and 

central banks can closely monitor expected liquidity developments and take timely action, particularly 

in terms of government policy. For example, regulators might revise legislation to stimulate capital 

market liquidity before a crisis and introduce supportive measures. As seen in mutual fund policies, 



allowing the cost of redemptions to be passed on to redeeming shareholders before or during a crisis 

could help prevent fire sales that impact the entire market. Regulators could incentivize funds to adopt 

new policies and alternatives to mitigate liquidity crises. 

Keywords: deep learning, machine learning, liquidity prediction, bond market, liquidity risk, liquidity 

premium, liquidity risk management 

 

1. Introduction  

 In financial economics, a key principle is the expectation of future market conditions, which 

heavily influences investor decisions. Liquidity, in particular, is a complex and elusive concept. The 

literature suggests that liquidity has multifaceted relationships with other market factors, making it 

challenging to form reliable expectations about future liquidity. Issuers of corporate bonds respond to 

anticipated liquidity changes, particularly in times of deterioration, to avoid distress from unfavorable 

refinancing conditions. Regulators and central banks, who closely monitor expected liquidity, are 

interested in identifying signs of worsening conditions to implement timely countermeasures. However, 

due to the lack of a universally accepted forecasting method, researchers have often inferred insights 

into the bond market’s dynamics by assuming that a bond’s current liquidity is the best predictor of its 

future liquidity [1]. However, expectations about future bond liquidity are crucial for determining 

today's bond prices and influencing the behavior of market participants. As a result, our current 

understanding of liquidity's role in the bond market may be limited or biased.  

In this paper, we design and build the predictive model which able to forecast the bond’s 

liquidity, its lack of liquidity in the upcoming day. Based on this predictive model (Distribution), we 

drive the forward-looking illiquidity measure: Expected Illiquidity (EI). The EI is computed by mean 

the distribution, providing a measure for the expected transaction cost of the bond. In our prediction 

model is based on modern technique and state-of-the-art machine learning model or deep learning 

model which allowing the incorporation of the non-linear relations between a rich set of illiquidity 

predictors and future illiquidity. We selection of predictions is motivated by boards stand of the bond 

market illiquidity literature. In our model, we train the deep learning model (MLR, MLP, MDL, LSTM, 

XGB) based on the information available. We implement the prediction models on the Thailand Bond 

Market using end of day (EOD) transaction data for the January 1, 2015, to January 24, 2024. In the 

part of target illiquidity measure within our analysis, we choose the size-adapted bid- ask spread 

(Reichenbacher, 2022), which measure a bond for a trade with representative size. However, we applied 

to any illiquidity measure by simple average bid-ask spread (Hong, An Empirical Study of Bond Market 

Transactions, 2000).  



In part of the performance of our predictive concept, the expected illiquidity measure, EI with 

the literature’s approach to use illiquidity in the current daily and we compare the forecasting errors in 

out-of-sample for the EI with naïve measure as benchmark prediction including compare between 

model using mean absolute error (MAE), mean absolute percent error (MAPE) and mean square error 

(MSE).  

Our expected contribution of paper we offer an easy-to-implement application that can help 

practitioners improve their decision-making in financial markets. Second, and more importantly, we 

contribute to the literature on the role of liquidity in corporate bond prices. The conclusions regarding 

liquidity in existing studies are based on the current level of a bond's illiquidity. Third, the 

implementation of this studies which study on liquidity is a significant contribution to improve portfolio 

management or investor’ decision and Regulators and Central banks monitor the expected development 

of liquidity very closely to take timely countermeasures. Especially, the policy of Government and 

regulators may change act actively to stimulate capital market liquidity before occurring the crisis as 

well as support affect some industries. Moreover, the policy of mutual fund may change the regulatory 

by allowing to pass on the cost of redemptions to the redeeming shareholders before or during crisis. 

Because the fire sales struggling funds might also impact the market as a whole, the regulator may 

incentivize funds to broadly use this new possibility. 

2. Literature Review 

  This paper addresses three strands of literature. First, it contributes to the growing body of 

research on machine learning approaches related to enhancing our understanding of financial markets. 

Gu, Kelly, and Xiu (2020) served as an initial inspiration for our work, and Bali, Beckmeyer, Mörke, 

and Weigert (2023) helped us refine the interpretation of our results. Our contribution to this strand lies 

in providing a practical application that may be useful for practitioners in improving their decision-

making in financial markets. Second, and more importantly, we advance the literature on the role of 

liquidity with respect to corporate bond prices. The conclusions drawn in related studies (e.g., Bao, Pan, 

and Wang, 2011; Friewald, Jankowitsch, and Subrahmanyam, 2012; Dick-Nielsen, Feldhütter, and 

Lando, 2012; Bongaerts, de Jong, and Driessen, 2017) rely on the current level of illiquidity of bonds. 

Our approach refines these findings and strongly emphasizes the significance of liquidity for corporate 

bond prices. We also build on Kelly, Palhares, and Pruitt (2023), who developed a factor model for the 

corporate bond market. To the best of our knowledge, we are the first to develop a forecasting model 

for individual bond liquidity. While Boyarchenko, Giannone, and Shachar (2019) found that 

autoregressive models excel in forecasting liquidity at the market level, we demonstrate that this result 

does not apply to individual bond liquidity. Third, we contribute to the literature on market fragility in 

corporate bond mutual funds. Unlike the convex flow-return relationship observed in equity mutual 

funds (Chevalier and Ellison, 1997), corporate bond mutual funds exhibit a concave flow-return 



relationship (Chen, Goldstein, and Jian, 2010; Goldstein, Jiang, and Ng, 2017). Existing empirical 

analyses in this literature typically rely on the current illiquidity of a fund's corporate bond portfolio to 

gauge the magnitude of the first-mover advantage. We enhance this literature by showing that the effect 

of illiquidity concerns on fund outflows approximately doubles when incorporating our measure of 

expected illiquidity. 

2. Methodology 

2.1 Data description and preparation  

The analysis is based on end of day bond transaction from Thailand Bond Market Association 

(TBMA) from January 1, 2015, to January 24, 2024. The daily transaction data of bonds issuing and 

appear in TBMA between 2015 to 2024. The bonds which issue by issuers cover every sector in market. 

Moreover, including the Bond characteristics, rating histories, and outstanding amounts are from 

Refinitiv Eikon and Bloomberg. We implement our illiquidity forecast for the size-adapted average bid-

ask spread measure of Reichenbacher and Schuster (2022), which overcomes the strong dependence of 

standard transaction cost measures on the observed trade sizes in a bond. The size-adapted bid-ask 

spread quantifies the cost to trade a “representative” volume, i.e., a trade size for which transaction 

costs equal their volume-weighted average across all trades. The measure is based on a market-wide 

functional form of transaction costs depending on trade size, which is estimated daily using the full 

cross-section of bonds. The bond market liquidity is represented by measure following, 

Life time (Term to maturity), Despite bond illiquidity being persistent [3] [4], a large body of 

empirical literature shows that it varies predictably with certain characteristics of a bond over its 

lifetime. As a bond approaches its maturity date, its price volatility typically decreases, leading to a 

narrower bid-ask spread. Early in its life, a bond might have a wider spread due to greater uncertainty 

and higher perceived risk. As maturity nears, the certainty around the bond's payout increases, reducing 

the risk for dealers and narrowing the spread. 

Age, the studies about the age of bond find that bonds are typically most liquid directly after 

issuance and get more illiquid when they age or in other words bonds are liquid and trade frequently. 

However, liquidity is usually highest immediately after issuance and tends to decline significantly as 

the bonds age. [5] [2]. When a bond is first issued, there is usually a significant amount of interest from 

investors. The initial distribution process involves many market participants, including institutional 

investors, which leads to a high volume of trading. This increased trading activity means that there is a 

large number of buy and sell orders, resulting in a narrower bid-ask spread due to higher liquidity. 

Outstanding,  Bonds with a higher outstanding amount and bonds that trade more frequently 

have lower transaction costs (Edwards, 2007) (Bao, 2011) (Jankowitsch, 2011) which meaning there 

are more buyers and sellers in the market. This higher liquidity reduces the bid-ask spread, which is a 

key component of transaction costs. When a bond is more liquid, it's easier to buy and sell without 



significantly affecting the price. 

Credit rating, riskier bonds with more credit risk are typically less liquid than comparable bonds 

with lower risks (Mahanti, 2008) (Hotchkiss, 2017). Bonds with greater credit risk are perceived as 

more likely to default. This higher risk makes investors more cautious, reducing the number of willing 

buyers and sellers in the market. This lack of market participants leads to lower liquidity and wider bid-

ask spreads, as dealers and investors demand a higher premium to compensate for the increased risk. 

Regarding credit risk,  

we use the average numerical bond rating of the two rating agencies Fitch and TRIS (local 

credit rating agency) which some of bonds have change between period of data in case of downgrade.    

Based on this literature, we build our set of predictors to forecast for each bond next period’s 

illiquidity measure. Given the high persistence of individual and market illiquidity, we naturally include 

a bond’s illiquidity measure in the current daily t (Current Illiquidity).  

Next, we include a bond’s age, its duration, and its (log-transformed) outstanding amount. We 

capture trading activity with the logarithms of average trade size and total trading volume. Following 

Chordia, Sarkar, and Subrahmanyam (2005), we incorporate a bond’s monthly return and order 

imbalance as possible predictors.  

We measure bond order imbalance as the difference between a bond’s buying and selling dollar 

volume normalized with total trading volume which capture and represent the number of trades (Pastor, 

2003).  

We are using the Trading value as a predict as a predictor variable (X) in a predictive model, 

as the liquidity proxy which trading Value can be used as a proxy for liquidity. Higher Trading Values 

might indicate more liquid markets, where assets can be easily bought and sold without significantly 

impacting prices. Lower Trading Values may suggest illiquidity, where transactions could be more 

challenging or costly. Moreover, the trading value have indicated the market sentiment which might 

reflect market sentiment or investor behavior. For instance, a sudden surge in Trading Value might 

suggest increased interest or confidence in the market, while a decline could indicate caution or 

uncertainty. (Brennan, Alternative factor specifications, security characteristics, and the cross-section 

of expected stock returns, 1998) 

We are using the Turnover Ratio (TO) as a predict as a predictor variable (X) in a predictive 

model, as the liquidity proxy which Turnover Ratio can serve as a proxy for liquidity. Higher turnover 

ratios may suggest greater liquidity, making it easier for investors to buy and sell shares without 

significant price impact. Moreover, the turnover ratio indicated the price movement which changes in 

the Turnover Ratio might also reflect movements in the stock's price. For instance, a high turnover ratio 

accompanying a price increase could suggest bullish sentiment, while a high turnover ratio 



accompanying a price decrease could indicate bearish sentiment. We defined total trading values of a 

stock over a specified timeframe divided by market capitalization. (Amihud, Market microstructure and 

securities values: Evidence from the Tel Aviv Exchange: Evidence from the Tel Aviv Exchange, 1997) 

We are using the Illiquidity Ratio (AMH) as a predict as a predictor variable (X) in a predictive 

model, measure is  ratio of the absolute bond returns over the trading value or the other word measure 

occurs to using price which sensitivity to gauge the impact or influence of order flow on price. Measure, 

an illiquidity. The metric for the resilience dimensions encompasses the return, incorporating the trading 

value, for 𝑠𝑡𝑜𝑐𝑘𝑖 on a given day. (Amihud, Illiquidity and Stock Returns: Cross-Section and Time 

Series Effects, 2002) 

We using Bid-Ask Spread (SPRD) as the dependence or precited variables which the values of 

difference between the best ask and best bid price (Amihud Y. , 1980). Bid-ask spread is commonly 

used as a proxy for liquidity due to its direct relationship with the ease and cost of trading a security. 

The bid-ask spread represents the immediate transaction cost to trade a security. A narrower spread 

indicates lower trading costs, reflecting higher liquidity, as it implies that buyers and sellers can trade 

the security at prices closer to each other. So, the bid-ask spread is a valuable proxy for liquidity because 

it encapsulates various aspects of market activity, including trading costs, market depth, competition, 

information efficiency, risk, trade frequency, dealer activity, and overall market conditions. By 

measuring how closely bid and ask prices align, the spread provides a clear and immediate indication 

of a security's liquidity. 

Table 1: Summary variables in model 

We summaries the descriptive statistic which AMH The variable shows a mean value of 0.03 

with a standard deviation of 1.33, indicating some variability around the mean. The range -4.28 to 4.78 

suggests a wide spread of data points. Credit rating the mean credit rating is 7.31, with a relatively low 

standard deviation of 0.76, indicating that ratings are clustered closely around the mean. The range 6.26 

to 8.26 shows a moderate variation. Issue size and Issue term: Both variables have no variation deviation 

of 0.00, indicating that all observations are identical at 9,363 and 14.64, respectively. Trading value, 

Term to maturity, Volume, and Spread: These variables show varying degrees of dispersion as indicated 

by their standard deviations. Trading value SD 8.72, Term to maturity SD 1.34, Volume SD 0.0847, 

Type Data Variables 

Independent 

(predictor) 

Transaction AMH, Credit rating, Issue size, Issue term, Trading value, 

Term to maturity, Turnover ratio, Volume 

Dependent 

(predicted) 

Transaction Spread 



and Spread SD 27.02 all demonstrate considerable variability in their respective data ranges. The 

turnover ratio has a mean of 0.00098 and a standard deviation of 0.0012, indicating low variability 

relative to its mean. In conclusion, the dataset encompasses a range of variables with varying levels of 

dispersion and centrality. Some variables exhibit minimal variation (like Issue size and Issue term), 

while others show broader ranges and higher standard deviations (such as Spread and Trading value). 

Understanding these statistics helps in interpreting the distribution and characteristics of each variable 

within the dataset. 

Table 2: Summary descriptive statistic  

The objective of the Ordinary Least Square (OLS) in the table3 regression is to estimate the 

relationships between a dependent variable which is bid-ask spread and more independent variables. 

So, we also check the importance factors for liquidity prediction model which statistically significant 

dependence variables y which is bid-ask spread. conclusion, the consistent significance of all variables 

like AMH, Credit rating, Issue size, Issue term, Trading value, Term to maturity, Turnover ratio, and 

the volume all of them can explain the bid-ask spread which represent the liquidity expectation. So, 

overall, the model has a high R-squared value, suggesting that variables can explains a large proportion 

of the variance in the bid-ask spread which is dependent variable. Most of the coefficients are 

statistically significant, as indicated by their low p-values.  Which we will take all of independence 

variables input into the machine learning and deep learning models for predict the liquidity 

 

Variables Mean Min Max SD 25% 50% 75% 

AMH 0.03 -4.28 4.78 1.33 -0.42 0.01 0.40 

Credit rating 7.31 6.26 8.26 0.76 6.83 7.32 7.79 

Issue size 9,363 9,363 9,363 0.00 9,363 9,363 9,363 

Issue term 14.64 14.46 14.46 0.00 14.64 14.64 14.64 

Trading value 7.62 0.13 55.43 8.72 2.61 5.22 10.05 

Term to maturity 12.21 10.02 14.55 1.34 11.11 12.17 13.31 

Turnover ratio 0.00098 0.00002 0.00723 0.0012 0.00029 0.0006 0.0012 

Volume 0.0745 0.0013 0.5475 0.0847 0.0257 0.0510 0.0985 

Spread 75.87 36.46 141.97 27.02 55.04 71.97 91.76 



Table 3: the summary table of the Ordinary Least Square (OLS) regression   

We also check the correlation between variables including correlation between lagged variables 

(1 until 7 days). The correlation coefficients are very weak for daily liquidity proxy data.  

2.2 Prediction Model  

The first step before developing the neural network. We try to be rescaling the numerical data 

of variables to a common scale. This is done to eliminate any inherent differences in the scales of the 

variables, which could otherwise result in biased models. After that, using the min-max normalization 

scales the data to a range between 0 and 1, where the minimum value of the data is mapped to 0 and the 

maximum value is mapped to 1. The formula for min-max normalization is: 

𝑋𝑛𝑜𝑟𝑚 =  
(𝑋 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 

Variables coef Std err t P>|t| [0.025 0.975] 

Intercept 2.589e-05 

 

6.53e-07 

 

39.614 

 

0.000 

 

2.46e-05 

 

2.72e-05 

 

AMH -7.6797 

 

2.392 

 

-3.210 

 

0.001 

 

-12.385 

 

-2.975 

Credit rating 0.0005 1.18e-05 

 

39.614 0.000 0.000 0.000 

Issue size 0.0518 0.001 39.614 0.000 0.049 0.054 

Issue term 5.177e-05 1.31e-06 39.614 0.000 4.92e-05 5.43e-05 

Trading value -0.0029 0.001 -3.218 0.001 -0.005 -0.001 

Term to maturity 52.2724 1.460 35.815 0.000 49.402 55.143 

Turnover ratio -1.436e-

12 

4.46e-13 -3.217 0.001 -2.31e-

12 

-5.58e-13 

Volume 0.2846 0.089 3.212 0.001 0.110 0.459 

R-squared (average)  0.792      

Adjusted R-squared (average) 0.79      



And spilt the data into train and test are 80% for train data and 20% for test data. We developed 

the neural network which is the regression model. The optimal structure of network based on 

experimental networks. We try to tune the hyper parameter of networks. The first, multi-layer 

perceptron fully connected neural network (MLP) (Khang, 2020) was developed. By the parameters of 

MLP are as follows: 

• The input layer has 60 neurons by using reLU activation. 

• The two hidden layers have from 30 and 20 neurons by using reLU activation. 

• The output layer: 1 neuron by using reLU activation. 

The architecture of the MLP is illustrated in Figure 1. 

 

 

The second state of model development, we try to develop the process of the model by mixed 

the architecture of deep learning is mixed deep learning (MDL) [20]. We tune parameter as follow: 

• The input layer: 60 neurons by using reLU activation. 

• The recurrent layer: 300 neurons by using reLU activation. 

• The three fully-connected hidden layers with dropout’s: from 300 and 20 neurons by using 

reLU activation. 

• The Output layer: 1 neuron by using reLU activation. 

 

Figure. 1 Architecture of the MLP 



The architecture of the MDL is illustrated in Figure 2 

 

 

The third state of the model development, we try to develop the Long Short-term memory 

(LSTM) is one of machine learning or artificial type be recurrent neural network used in the deep 

learning. The network of LSTM compensates addressing the challenges of vanishing gradients and 

short-term memory in traditional recurrent neural networks. The LSTM architecture comprises the cell 

state, which acts as the memory unit of the network, along with its regulators. The cell state holds 

information that can be stored, written to, or read from a preceding cell state through gates. So, the third 

stage of model development process is LSTM. We tune parameter as follow: 

• The input layer: 64 neurons by using reLU activation. 

• The recurrent layer: 300 neurons by using reLU activation. 

• The three fully-connected hidden layers with dropout’s: 0.2 by using reLU activation. 

• The output layer: 1 neuron by using reLU activation. 

 

Figure. 2 Architecture of the MDL 



The architecture of the LSTM is illustrated in Figure 3. 

 

 The fourth state, we try to develop the XGB  

𝐸𝐼𝑖,𝑡  ≡  𝐸𝑡[𝐼𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑖,𝑡+1 =  𝑔𝑡(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠𝑠𝑖,𝑡)] 

Which estimate gt, we use gradient boosted regression trees (GBRT). This machine learning algorithm 

allows for a flexible shape of gt and is more efficient than methods based on neural networks, which is 

important, since we re-estimate the model on a rolling basis. The GBRT algorithm approximates gt via 

building a regression tree based on a set of training observations, Traint, and a set of validation 

observations, V alt. Once we have trained the tree according to the algorithm described below, we will 

evaluate its predictive performance via a test set Testt. Figure 4, The output of architecture the XGB 

 

Figure. 3 Architecture of the LSTM 

 

Figure. 4 Architecture of the XGB 



Bid-Ask Spread (SPRD) the values of difference between the ask and bid price. (Amihud Y. , 

1980) So, we set he input data is defined as follows: 

𝑋 = 𝑋𝑡𝑡𝑚, 𝑋𝑎𝑔𝑒, 𝑋𝑜𝑢𝑡 , 𝑋𝑟𝑎𝑡𝑖𝑛𝑔, 𝑋𝑇𝑉 , 𝑋𝑇𝑂 , 𝑋𝐴𝑀𝐻 , 𝑋𝑉𝑂𝐿 

Where 

𝑋𝑡𝑡𝑚 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑔𝑒 (𝑡𝑒𝑟𝑚 𝑡𝑜 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦) 

𝑋𝑎𝑔𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑙𝑖𝑓𝑡𝑡𝑖𝑚𝑒 (𝑎𝑔𝑒) 

𝑋𝑜𝑢𝑡  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 

𝑋𝑟𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑐𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔 

𝑋𝑇𝑉  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 

𝑋𝑇𝑂  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 

𝑋𝐴𝑀𝐻 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 

𝑋𝑉𝑂𝐿 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑛 

For deep learning network has a mixed architecture (MLP, MDL,LSTM). The output of models 

is spread (bid-ask spread) defined as follows: 

𝑦(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝑓(𝑦1, 𝑦2, 𝑦3, 𝑦4, … . , 𝑦𝐿) 

Where : 

𝑦𝑙 denotes a layer in which l = 1, 2,…..L (L denotes  a number of layers) 

𝑓() denotes the output activation function.  

 Let dense denotes the layer composed of certain number of neurons which denotes a number of 

neurons (RNN represents a recurrent layer), relu denotes rectified linear unit activation function defined 

as follows: 

𝑟𝑒𝑙𝑢 (𝑧) {
𝑧  𝑖𝑓 𝑧 ≥ 0

0  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The initial (input) layer is specified as follows: 

𝑦 = 𝑑𝑒𝑛𝑠𝑒(𝑋𝑡𝑡𝑚, 𝑋𝑎𝑔𝑒, 𝑋𝑜𝑢𝑡 , 𝑋𝑟𝑎𝑡𝑖𝑛𝑔, 𝑋𝑇𝑉 , 𝑋𝑇𝑂 , 𝑋𝐴𝑀𝐻 , 𝑋𝑉𝑂𝐿 

The second layer is the RNN layer in the case of MLP, MDL and LSTM, defined as follows: 

𝑦2 = 𝑅𝑁𝑁(𝑦1,neurons relu) 

For, the full equation of MLP, MDL and LSTM model will input into   

𝑍[1]  =  𝑋𝑊[1]  + 𝑏[1] 

𝐴[1]  =  𝑅𝑒𝐿𝑈(𝑍[1]) 

𝑍[2]  =  𝐴[1]𝑊[2]  +  𝑏[2] 

𝐴[2]  =  𝑅𝑒𝐿𝑈(𝑍[2]) 



𝑍[3]  =  𝐴[2]𝑊[3]  +  𝑏[3] 

𝐴[3]  =  𝑅𝑒𝐿𝑈(𝑍[3]) 

�̂�  =  𝐴[3]𝑊[𝑜𝑢𝑡]  +  𝑏[𝑜𝑢𝑡] 

Where  𝑍[1,2,3] : the equation of linear function  

𝐴[1,2,3] : Activation function of hidden layer 1,2,3 which is the equation of non-linear function   

 𝑊[1,2,3] : Matrix weight output of hidden layer 1,2,3  

 𝑊[𝑜𝑢𝑡] : Matrix weight output 

𝑏[𝑜𝑢𝑡] : Bias output   

X : Matrix of input variables 

2.2 Model performance metrics  

In the part of Model performance metrics, we implement multiple liner regression (MLR), 

multilayer perceptron (MLP), mixed deep learning (MDL) and long-short term memory (LSTM) 

architecture to predict the bid-ask spread. Within each of these models, several options are 

considered with different number of neurons. Prediction accuracy and reliability of these models 

are assessed by calculating three different performance metrics Mean Absolute Percentage Error 

(MAPE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Square Error 

(MSE). The analytical form of these metrics is defined as follows 

𝑴𝑨𝑷𝑬 =  
𝟏

𝑵
∑ |

(𝒚𝒊 − 𝒚�̂�

𝒚𝒊
|

𝑵

𝒊=𝟏

 

𝑴𝑺𝑬 =  
𝟏

𝑵
∑(𝒚𝒊 − 𝒚�̂�)𝟐

𝑵

𝒊=𝟏

  

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1

 

 

 

Where, 𝑦𝑖  : refers to the original bid-ask spread.  𝑦�̂�   : refer to the predicted bid-ask spread. 

           N : Number of observation. 

Smaller values of  MAPE, MAE and MSE, better the performance model. Moreover, 

performance scores are calculated after applying the inverse transformation in the 

predictions obtains from the normalized data. Each model is executed multiple times 



independently to address the stochastic behavior.  

3. Results  

The objective of the experiment was to evaluate the developed liquidity prediction model for 

fixed income in Thailand Bond Market. We employed mean absolute percent error (MAPE), mean 

absolute error (MAE) and mean square error (MSE) as metrics. The experiments pertaining to MLR 

MPL, MDL, LSTM and XGB which are deep learning and machine learning model compare with 

traditional model and naïve benchmark. Hyper parameters and parameters in all models were 

determined based on related works and experimentation. The results are presented in the table 1 and the 

Fig 4 illustrates the predicting procedure with continuous data values. 

In comparison, the bid-ask spread which represent EI from our XGB which are the machine 

learning model that prediction model only has a forecasting error of 2.88 basis points, corresponding to 

a 0.24% reduction in error. On top of the XGB which have GBRT algorithm approach. we also assess 

a set of alternative models to forecast EI. We estimate MLP, MDL, LSTM which are deep learning 

model have percent error 4.27%, 10.33%, 17.99% and have forecasting error of 36.02, 252.46, 369.40 

and 2,930.17 basis point respectively. Compare with naïve benchmark which have percent error 11.97% 

and forecast error 154.47 basis point.  Based on a Diebold and Mariano (1995) test, shows that GBRT 

significantly outperforms. Moreover, the best value of performance metric in MLP, MDL and LSTM 

model has been achieved in 100 epochs. we also estimate a model that only uses predictors that are 

directly related to illiquidity. Table 4 shows that the XGB model, although using a much smaller number 

of predictors, still out- performs the naïve benchmark. our XGB prediction model generates an error 

that is 2.88 basis points lower than the error of the naïve benchmark model, leading to a 0.24% error 

reduction. In comparison with the naïve benchmark. Again, MLP is better than MDL is better than MLR 

which the linear approach and LSTM without variable selection. 

Table 4: Comparative analysis of average MAPE, MAE and MSE on individual bonds in Thailand 

Market Bond Association which value obtained using MLR, MLP, MDL, LSTM and XGB models 

(Performance of prediction models).  

Models 

TEST (average) 

MAPE MAE (bsp) MSE (bsp) 

MLR 0.1799 18.59 369.40 

MLP 0.0427 4.40 36.02 

MDL 0.1033 10.64 252.46 



Models 

TEST (average) 

MAPE MAE (bsp) MSE (bsp) 

LSTM 0.5261 54.12 2,930.17 

XGB 0.0024 0.27 2.88 

NAÏVE BENCHMARK 0.1197 12.31 154.47 

 

In comparison aspect duration, For Short-Term Predictions (1-5 years and 5-10 years), LSTM 

which are deep learning model have performed well is the most reliable model that prediction model 

only has a forecasting error of 28.5301, 33.5584 basis points, corresponding to a 18.01%, 13.05% 

reduction in error respectively.  For Long-Term Predictions (more than 10 years), XGB is the most 

reliable model that prediction model only has a forecasting error of 8.1743, 13.8052 basis points, 

corresponding to a 0.7%, 2.82% reduction in error respectively. For alternative models to forecast EI. 

We estimate MLP, MDL which are deep learning model have high percent error and forecasting error. 

Also, naïve benchmark which have high percent error and high forecast error. Table 5 still shows that 

the LSTM, XGB model, although using a much smaller number of predictors, still out- performs the 

naïve benchmark. our LSTM, XGB prediction model generates an error that is lower than the error of 

the naïve benchmark model. In comparison with the naïve benchmark. Again, LSTM, XGB is better 

than MDL is better than MLR which the linear approach and LSTM, XGB without variable selection. 

Table 5: Comparative analysis of average MAPE, MAE and MSE on individual bonds classify by 

duration which value obtained using MLR, MLP, MDL, LSTM and XGB models (Performance of 

prediction models).  

Models 

 TEST (Average) classifies by durations (years) 

Metrics 1-5 5-10 10-15 > 15 

MLR MAPE 1.7576 0.6215 0.0192 0.0522 

 MAE 45.1363 19.4861 3.3705 5.5580 

 MSE 5700.8941 849.9031 25.8292 36.6509 

MLP MAPE 0.4966 0.8785 0.1325 0.2015 



Models 

 TEST (Average) classifies by durations (years) 

Metrics 1-5 5-10 10-15 > 15 

 MAE 12.3732 27.4828 23.5942 21.4592 

 MSE 415.3636 2750.9444 672.7231 474.4174 

MDL MAPE 1.6153 0.5161 0.4172 0.4245 

 MAE 39.8025 17.2539 72.0472 44.2189 

 MSE 1964.7712 542.4732 5190.8047 2803.2707 

LSTM MAPE 0.1801 0.1305 0.9184 0.9277 

 MAE 4.8816 4.6767 165.0243 102.2540 

 MSE 28.5301 33.5584 27233.0837 10484.1633 

XGB MAPE 0.3800 0.2252 0.0070 0.0282 

 MAE 9.6084 7.2380 1.2101 3.0610 

 MSE 105.1098 64.0236 8.1743 13.8052 

NAÏVE 

BENCHMARK 
MAPE 1.4010 0.7085 0.0650 0.1730 

 MAE 36.5732 23.2184 11.6448 18.5415 

 MSE 1350.4441 571.8879 142.4078 349.2697 

 

In comparison aspect credit rating, For AAA and AA rating, MLP and LSTM which are deep 

learning model have performed well is the most reliable model that prediction model only has a 

forecasting error of 67.6726, 109.2670 basis points, corresponding to a 30.13%, 19.24% reduction in 

error respectively for MLP, forecasting error of 62.8964, 53.4266 basis points, corresponding to a 

34.76%, 14.42% reduction in error respectively for LSTM. For A rating, LSTM outperforms other 

models forecasting error of 26.2699 basis points, corresponding to a 15.18% reduction in error 

respectively. For BBB rating, XGB shows excellent performance, forecasting error of 22.2224 basis 

points, corresponding to a 1.36% reduction in error respectively. For non-investment grade, XGB has 



relatively low MAPE, indicating better percentage accuracy. For alternative models to forecast EI.  We 

estimate MDL which are deep learning model have high percent error and forecasting error. Also, naïve 

benchmark which have high percent error and high forecast error. Table 6 still shows that the LSTM, 

MLP, XGB model, although using a much smaller number of predictors, still out- performs the naïve 

benchmark. our LSTM, MLP, XGB prediction model generates an error that is lower than the error of 

the naïve benchmark model. In comparison with the naïve benchmark. Again, LSTM, MLP, XGB is 

better than MDL is better than MLR which the linear approach and LSTM, MLP, XGB without variable 

selection. 

Table 6: Comparative analysis of average MAPE, MAE and MSE on individual bonds classify by credit 

rating which value obtained using MLR, MLP, MDL, LSTM and XGB models (Performance of 

prediction models).  

Models 

 TEST (Average) classifies by durations (years)  

Metrics AAA AA A BBB Non-investment grade 

MLR MAPE 0.3921 0.1432 0.3078 0.1536 3.7131 

 MAE 8.7506 6.1353 6.0684 26.2520 21.9435 

 MSE 106.6033 59.8573 55.5594 708.5144 1059.4885 

MLP MAPE 0.3013 0.1924 1.4296 0.0565 1.3795 

 MAE 6.6651 8.3561 16.7018 9.4879 11.8654 

 MSE 67.6726 109.2670 378.9988 144.6566 242.3360 

MDL MAPE 1.2567 0.7255 2.3218 0.2546 1.6353 

 MAE 27.6543 31.5420 25.0551 43.8210 17.2069 

 MSE 1352.4046 1489.2201 837.9330 2948.7107 391.9197 

LSTM MAPE 0.3476 0.1442 0.1518 0.5997 0.6230 

 MAE 7.3494 6.0412 3.9816 103.0142 29.7549 

 MSE 62.8964 53.4266 26.2699 10624.1374 923.3857 

XGB MAPE 0.1877 0.3376 0.6530 0.0136 2.2795 



Models 

 TEST (Average) classifies by durations (years)  

Metrics AAA AA A BBB Non-investment grade 

 MAE 5.1978 14.5132 8.3325 2.2223 15.2455 

 MSE 46.3033 245.4450 93.4824 22.2224 426.3757 

NAÏVE 

BENCHMARK 
MAPE 1.1499 0.8151 1.9474 0.1621 2.0353 

 MAE 25.8425 36.0396 25.2251 27.6069 14.5179 

 MSE 693.6692 1333.1195 726.0078 779.4268 334.2332 

 

 
 

 

 

 
 

 

 

 

Figure. 5 The performance metric MPL, MDL and LSTM 



 

The table 7 presents the weights or coefficients of various financial and market variables used 

in a regression model, along with the average values of these coefficients. Intercept (Bias). The 

implication shows the model indicates that Trading Value, Turnover Ratio, and Volume are the most 

significant factors positively influencing the outcome. In contrast, AMH and Credit Rating have a slight 

negative impact. Issue Size and Issue Term do not influence the outcome in this model. The base value 

for the prediction starts at 80, with adjustments made according to the coefficients of the respective 

variables. So, the equation of MLR model will input into  

�̂�  =  𝑤0  + 𝑤1𝑥1  +  𝑤2𝑥2 + . . . . . . + 𝑤𝑝𝑥𝑝 

 

Table 7: Average bias and weight of the equation MLR model for predicting the spread. 

Weight output / coefficient of Variables Average  

Bias (interception (𝑤0)) 80 

AMH (𝑤1) -0.64 

Credit rating (𝑤2) -0.50 

Issue size (𝑤3) 0 

Issue term (𝑤4) 0 

Trading value (𝑤5) 147.57 

Term to maturity (𝑤6) 7.80 

Turnover ratio (𝑤7) 147.57 

Volume (𝑤8) 295.83 

 

The table 8 presents the weights or coefficients of variables for different layers of three types 

of neural network models: MLP, MD, and LSTM. Each layer's weights and biases are given specific 

values. From the weight values provided, MLP places significant importance on both its hidden layers 

and output layer, as indicated by the larger weights and biases. MDL generally has smaller weights and 

biases, suggesting a more uniform or distributed approach to handling data across layers. LSTM shows 

strong reliance on the input layer and significant biases in hidden layers, indicating a strong initial 



influence and adjustment capacity. In summary, the MLP model seems to emphasize deep layer learning 

and final output computation, the MDL model takes a balanced approach across layers, and the LSTM 

model focuses on initial data input and internal adjustments for sequential data handling. So, the 

equation of MLP, MDL and LSTM model will input into   

�̂�  =  𝐴[3]𝑊[𝑜𝑢𝑡]  +  𝑏[𝑜𝑢𝑡] 

Table 8: Average bias and weight of the equation MLP, MDL and LSTM model for predicting the 

spread. 

Weight / coefficient of Variables MLP MDL LSTM 

Input layer Hidden layer 1 (𝑊[1]) -0.0004125 -0.000353906 0.535931719 

Hidden layer 1 (BIAS) (𝑏[1]) 0.168631875 0.0035125 0.000346582 

Hidden layer 2 (𝑊[2]) 0.027387083 0.016515 0.358102271 

Hidden layer 2 (BIAS) (𝑏[2]) 0.016515 0.003870792 -0.008585352 

Hidden layer 3 (𝑊[3]) 0.050803125 0.028845479 0.076608617 

Hidden layer 3 (BIAS) (𝑏[3]) 0.063284688 0.013106875 0.025435506 

Output layer (𝑊[𝑜𝑢𝑡]) 0.119960313 0.02665107 0.138594431 

Output layer (BIAS) (𝑏[𝑜𝑢𝑡]) 0.32075 0.0358125 0.23485 

4. Discussion   

 In this section, we endeavor to compare the developed XGB MLP, MDL, and LSTM models 

with alternative approaches. Table 2 present the outcomes of comparing the developed model with other 

methods from the relevant literature, all focusing on the common goal of liquidity prediction, are 

presented in this section. 

Table 9: Comparative Analysis of Difference Models for Fixed income (Bond) 

Authors Years Models MSE (%) 

Marcel Müller, Michael 

Reichenbacher, Philipp Schuster, 

2023 Extreme Gradient 

Boosting 

0.604 



Marliese Uhrig-Homburg Invalid 

source specified. 

this research 2024 Extreme Gradient 

Boosting 

0.0288 

  Multi-layer perceptron  0.3602 

  Mixed Deep Learning 2.5246 

  Long-term Short-term 

Memory 

29.3 

 

The techniques exhibit a low diversity in terms of MSE. The methods proposed in this paper 

(XGB/MLP) attained a lower Mean Squared Error (MSE) compared to the others approach and 

demonstrated a lower Mean Squared Error (MSE) than the presented approach, and the results are 

predominantly derived from simulated data. Hence, the MSE may be influenced by the simulation 

methods. The results obtained by XGB/MLP are based on real data. In general, it is challenging to create 

a model that is universally applicable for predicting liquidity or illiquidity across various bond 

characteristics or markets in different countries. For instance, liquidity characteristics in emerging 

markets and developed markets may vary. 

5. Conclusion 

  In this study, we propose a prediction model for individual expected bond illiquidity, EI. We 

apply a machine learning and deep learning methodology that accounts for the information available to 

a contemporary forecaster and that allows for changing structural non-linear relations between variables 

which have effect to liquidity and illiquidity which represent by bid-ask spread over time. Our approach 

can generally be implemented for an arbitrary illiquidity measure. Examining the effects of our 

predictive illiquidity measures on corporate bond prices by looking at yield spread changes. Using our 

predictive measures for illiquidity, both alphas and risk premiums of illiquid bonds are substantially 

higher than previously reported in the literature. Finally, we use EI to examine the impact of rising 

illiquidity concerns in poorly performing corporate bond funds on investors’ redemption decisions. 

Consistent with the implications of strategic complementarities among corporate bond fund investors, 

our findings extend the insights of Goldstein, Jiang, and Ng (2017), They highlight that historically 

badly performing funds are especially sensitive to illiquidity due to the fear of fund runs. When we add 

expected illiquidity deterioration (based on EI) on top of current illiquidity of a fund. Our results provide 

important insights regarding the discussion of a proposal by the Security Exchange and Commission 



(Thailand) to oblige mutual funds to apply swing pricing together with an earlier closing time for orders 

of mutual fund shares that receive the end-of-the-day price from the same trading day. Swing pricing 

provides a way for the fund manager to alter the end-of-the-day NAV of a fund depending on flows and 

the fund’s (expected) liquidity via a so-called swing factor. This way, anticipated liquidation costs can 

be charged from redeeming investors instead of being passed on to the investors that remain in the fund. 

To this date, swing pricing is voluntary and, in practice, not implemented by any mutual fund. 

Additionally, an adaption of our forecasting model could be used to calibrate the swing factor by mutual 

fund managers. Essentially, expected illiquidity is exactly what fund managers need to estimate when 

setting this factor. 

6. Policy Implication 

The complexity and non-linear relationships involved in liquidity prediction and liquidity risk 

in capital markets necessitate the use of advanced models to develop tailored strategies. Policymakers 

can implement targeted measures to mitigate liquidity risks and enhance financial stability across 

various sectors. Effective liquidity risk management relies on predictive models that can accurately 

anticipate and manage these risks. Advanced models like Extreme Gradient Boosting (XGB), which 

have demonstrated lower error metrics, should be prioritized, especially in sectors with higher liquidity 

risks. These models offer more accurate forecasts, aiding in better liquidity management.  For 

economic stability, accurate predictive models are crucial for informed decision-making. 

Policymakers should focus on enhancing the accuracy of models like XGB to ensure reliable forecasts 

and better economic outcomes through improved liquidity management in capital markets. The 

integration of advanced predictive models into liquidity risk management processes offers a 

transformative opportunity to enhance economic stability and support informed policy decisions. By 

adopting sector-specific interventions, improving data quality, and providing robust regulatory 

support, policymakers can significantly reduce liquidity risks. Effective implementation of these 

strategies will lead to more resilient economic systems, better anticipation of financial challenges, and 

sustainable growth. This approach underscores the critical role of predictive analytics in shaping future 

economic policies and ensuring financial stability. 

Using Predictive Models for Regulators to Regulate the Capital Market.  The deployment of 

predictive models for regulating capital markets presents a transformative approach for enhancing 

market stability, improving risk management, and fostering investor confidence. By incorporating 

advanced machine learning techniques such as MLP and XGB, regulators can more accurately predict 

liquidity risks and take preemptive actions to mitigate potential market disruptions.  

Enhanced Market Surveillance:  

• Utilize predictive models to continuously monitor liquidity conditions and identify early 

warning signals of market stress. This allows for timely interventions to prevent market crises.  



• Improve the identification of systemic risks within different market segments, enabling 

more targeted regulatory actions.  

Risk Management Frameworks:  

• Implement tailored regulatory measures for sectors exhibiting high liquidity risk, such as 

Financials, Industrials, and Services. Predictive models can guide the formulation of specific capital 

and liquidity requirements.  

• Incorporate predictive insights into stress testing scenarios to evaluate the resilience of 

financial institutions and markets under adverse conditions.  

Optimized Regulatory Policies:  

• Leverage model predictions to inform policy decisions, ensuring that regulations are 

grounded in robust data analysis and predictive accuracy.  

• Adapt regulatory policies dynamically based on ongoing predictive analysis, allowing for 

more flexible and responsive regulation.  

Improved Transparency and Confidence:  

• Enhance communication with market participants regarding the regulatory use of 

predictive models, promoting transparency and building confidence in the regulatory framework.  

• Strengthen investor protection mechanisms by predicting and mitigating liquidity risks that 

could adversely impact market stability and investor interests. 

Strategic Actions for Regulatory Implementation:  

• Encourage the adoption of advanced predictive models within regulatory agencies to 

enhance surveillance and risk management capabilities.  

• Develop and enforce sector-specific regulations based on predictive model insights, 

addressing unique liquidity risks and vulnerabilities. 

The application of predictive models in the regulation of capital markets represents a significant 

advancement in ensuring market stability and protecting investor interests. By leveraging the 

capabilities of advanced machine learning techniques, regulators can enhance their surveillance, risk 

management, and policy-making processes. This approach not only enables more accurate prediction 

and mitigation of liquidity risks but also fosters a more resilient and transparent financial system. The 

strategic actions outlined provide a roadmap for regulators to effectively integrate predictive models 

into their regulatory frameworks, thereby promoting sustainable market development and economic 

stability. 
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